Regulation of pulmonary circulation by alveolar oxygen tension via airway nitric oxide.

نویسندگان

  • H Ide
  • H Nakano
  • T Ogasa
  • S Osanai
  • K Kikuchi
  • J Iwamoto
چکیده

The effects of airway (AH) and vascular hypoxia (VH) on the production of nitric oxide (NO; VNO) were tested in isolated buffer-perfused (BFL) and blood-perfused rabbit lungs (BLL). To produce AH and/or VH, the lung was ventilated with 1% O(2) gas, and/or the perfusate was deoxygenated by a membrane oxygenator located on the inlet limb to the pulmonary artery. We measured exhaled NO (VNO), accumulation of perfusate NOx, and pulmonary arterial pressure (Ppa) during AH (inspired O(2) fraction = 0.01) and/or VH (venous PO(2) = 26 Torr). In BFL, a pure AH without VH caused decreases in VNO and NOx accumulation with a rise in Ppa. However, neither VNO, NOx accumulation, nor Ppa changed during VH. Similarly, in BLL, only AH reduced VNO, although NOx accumulation was not measurable because of Hb. When alveolar PO(2) was gradually reduced from 152 to 0 Torr for 20 min, AH reduced VNO curvilinearly from 73.9 +/- 8 to 25.6 +/- 8 nl/min in BFL and from 26.0 +/- 2 to 5. 2 +/- 1 nl/min in BLL. This plot was analogous to that of a substrate-velocity curve for an enzyme obeying Michaelis-Menten kinetics. The apparent Michaelis-Menten constant for O(2) was calculated to be 23.2 microM for BLL and 24.1 microM for BFL. These results indicate that the VNO in the airway epithelia is dependent on the level of inspired O(2) fraction, leading to the tentative conclusion that epithelial NO synthase is O(2) sensitive over the physiological range of alveolar PO(2) and controls pulmonary circulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the pulmonary circulation in the fetus and newborn.

During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary...

متن کامل

Effects of inhaled nitric oxide and oxygen in high-altitude pulmonary edema.

BACKGROUND High-altitude pulmonary edema (HAPE) is characterized by pulmonary hypertension, increased pulmonary capillary permeability, and hypoxemia. Treatment is limited to descent to lower altitude and administration of oxygen. METHODS AND RESULTS We studied the acute effects of inhaled nitric oxide (NO), 50% oxygen, and a mixture of NO plus 50% oxygen on hemodynamics and gas exchange in 1...

متن کامل

Pulmonary NO synthase inhibition and inspired CO2: effects on V'/Q' and pulmonary blood flow distribution.

Inhaled carbon dioxide decreases ventilation/perfusion ratio (V'/Q') heterogeneity in dogs. The aim of this study was to test whether inhaled CO2 improves the V'/Q' by inhibition of nitric oxide production and whether inhibition of endogenous NO production in the lung alters gas exchange and V'/Q' matching. Eleven healthy dogs were anaesthetized and mechanically ventilated. The multiple inert g...

متن کامل

NADPH oxidase-derived ROS and the regulation of pulmonary vessel tone.

Pulmonary vessel constriction results from an imbalance between vasodilator and vasoconstrictor factors released by the endothelium including nitric oxide, endothelin, prostanoids, and reactive oxygen species (ROS). ROS, generated by a variety of enzymatic sources (such as mitochondria and NADPH oxidases, a.k.a. Nox), appear to play a pivotal role in vascular homeostasis, whereas elevated level...

متن کامل

Airway epithelial-derived factor relaxes pulmonary vascular smooth muscle.

The factors controlling the pulmonary vascular resistance under physiological conditions are poorly understood. We have previously reported on an apparent cross talk between the airway and adjacent pulmonary arterial bed where a factor likely derived from the bronchial epithelial cells reduced the magnitude of agonist-stimulated force in the vascular smooth muscle. The main purpose of this inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 1999